Vertical decorative line
Research Center for Complex Molecular Systems and Biomolecules
Center for Biomolecules and Complex Molecular Systems   
Supported by the Ministry of Education, Czech Republic      
Decorative element
Decorative element
Decorative element Research | Papers | People | Events | Archive | Teach | Contact   
Decorative element
Empty gif
Empty space gif.
Abstract of the article
Empty gif Empty gif
Theoretical investigation of site-specific characteristics of CO adsorption complexes in the Li+-FER zeolite.

Nachtigall, P.; Bulanek, R., Applied Catalysis A, 307 118 - 127 (2006)

The coordination of extraframework Li+ cations in FER and the formation of mono- and dicarbonyl complexes in the Li+-FER zeolite were investigated using a periodic density function theory (DFT) model. The Li+ cations strongly prefer the coordination on top of five- or six-member rings on the channel wall. The Li+ cation is always coordinated to at least three framework oxygen atoms. Calculated CO stretching frequencies are in excellent agreement with experimental results [Microporous Mesoporous Mater. 34 (2000) 67]; thus, the interpretation of experimental data at the atomic scale level is proposed. The dicarbonyl complexes can be readily formed on Li+ cations coordinated in the eight-member ring entrance window of perpendicular channel. The differences in IR spectra of CO adsorbed on Li+-FER and Li+-MFI zeolites can be understood based on the theoretical investigation. The IR band at 2193 cm(-1) observed for CO/Li+-MFI system but missing in the IR spectra of CO/Li+-FER is due to the Li+ sites on the channel intersection where Li+ is coordinated only to two oxygen atoms of AlO4 tetrahedron. While such sites are populated in Li+-MFI they are not significantly populated in Li+-FER. Therefore, the differences in vibrational dynamics of CO adsorbed on Li+ in FER and MFI are due to the differences in Li+ coordination in these frameworks.


<< Go back
Empty space gif.
Empty gif
Decorative element